Combinatorial genetic analysis of a network of actin disassembly‐promoting factors
نویسندگان
چکیده
The patterning of actin cytoskeleton structures in vivo is a product of spatially and temporally regulated polymer assembly balanced by polymer disassembly. While in recent years our understanding of actin assembly mechanisms has grown immensely, our knowledge of actin disassembly machinery and mechanisms has remained comparatively sparse. Saccharomyces cerevisiae is an ideal system to tackle this problem, both because of its amenabilities to genetic manipulation and live-cell imaging and because only a single gene encodes each of the core disassembly factors: cofilin (COF1), Srv2/CAP (SRV2), Aip1 (AIP1), GMF (GMF1/AIM7), coronin (CRN1), and twinfilin (TWF1). Among these six factors, only the functions of cofilin are essential and have been well defined. Here, we investigated the functions of the nonessential actin disassembly factors by performing genetic and live-cell imaging analyses on a combinatorial set of isogenic single, double, triple, and quadruple mutants in S. cerevisiae. Our results show that each disassembly factor makes an important contribution to cell viability, actin organization, and endocytosis. Further, our data reveal new relationships among these factors, providing insights into how they work together to orchestrate actin turnover. Finally, we observe specific combinations of mutations that are lethal, e.g., srv2Δ aip1Δ and srv2Δ crn1Δ twf1Δ, demonstrating that while cofilin is essential, it is not sufficient in vivo, and that combinations of the other disassembly factors perform vital functions.
منابع مشابه
Formation and disassembly of a contractile actomyosin network mediates content release from large secretory vesicles
Secretion of adhesive glycoproteins to the lumen of Drosophila larval salivary glands is carried out by contraction of an actomyosin network that is assembled around large secretory vesicles, following their fusion to the apical membranes. We have identified a cycle of actin coat nucleation and disassembly that is independent of myosin. Recruitment of active Rho1 to the fused vesicle triggers a...
متن کاملDiagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملCommon effects of attractive and repulsive signaling: Further analysis of Mical-mediated F-actin disassembly and regulation by Abl
To change their size, shape, and connectivity, cells require actin and tubulin proteins to assemble together into long polymers - and numerous extracellular stimuli have now been identified that alter the assembly and organization of these cytoskeletal structures. Yet, there remains a lack of defined signaling pathways from the cell surface to the cytoskeleton for many of these extracellular si...
متن کاملOverlapping and distinct functions for cofilin, coronin and Aip1 in actin dynamics in vivo.
Actin-filament disassembly is crucial for actin-based motility, to control filament network architecture and to regenerate subunits for assembly. Here, we examined the roles of three actin cytoskeletal proteins, coronin, cofilin and Aip1, which have been suggested to combine in various ways to control actin dynamics by promoting or regulating disassembly. We studied their functions during the e...
متن کاملGMF Is a Cofilin Homolog that Binds Arp2/3 Complex to Stimulate Filament Debranching and Inhibit Actin Nucleation
Cell locomotion and endocytosis are powered by the rapid polymerization and turnover of branched actin filament networks nucleated by Arp2/3 complex. Although a large number of cellular factors have been identified that stimulate Arp2/3 complex-mediated actin nucleation, only a small number of studies so far have addressed which factors promote actin network debranching. Here, we investigated t...
متن کامل